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Abstract. Techniques for learning automata have been adapted to automatically
infer assumptions in assume-guarantee compositional verification. Learning, in
this context, produces assumptions and modifies them using counterexamples
obtained by model checking components separately. In this process, the inter-
face alphabets between components, that constitute the alphabets of the assump-
tion automata, are fixed: they include all actions through which the components
communicate. This paper introduces alphabet refinement, a novel technique that
extends the assumption learning process to also infer interface alphabets. The
technique starts with only a subset of the interface alphabet and adds actions to it
as necessary until a given property is shown to hold or to be violated in the sys-
tem. Actions to be added are discovered by counterexample analysis. We show
experimentally that alphabet refinement improves the current learning algorithms
and makes compositional verification by learning assumptions more scalable than
non-compositional verification.

1 Introduction

Model checking is an effective technique for finding subtle errors in concurrent soft-
ware. Given a finite model of a system and of a required property, model checking
determines automatically whether the property is satisfied by the system. The limita-
tion of this approach, known as the “state-explosion” problem [9], is that it needs to
explore all the system states, which may be intractable for realistic systems.

Compositional verification addresses state explosion by a “divide and conquer” ap-
proach: properties of the system are decomposed into properties of its components and
each component is then checked separately. In checking components individually, one
needs to incorporate some knowledge of the contexts in which the components are ex-
pected to operate correctly. Assume-guarantee reasoning [17, 22] addresses this issue
by introducing assumptions that capture the expectations of a component from its envi-
ronment. Assumptions have traditionally been defined manually, which has limited the
practical impact of assume-guarantee reasoning.

Recent work [12, 5] has proposed a framework based on learning that fully auto-
mates assume-guarantee model checking. Since then, several similar frameworks have



been presented [3, 20, 24]. To check that a system consisting of components � � and � �
satisfies a property � , the framework automatically guesses and refines assumptions for
one of the components to satisfy � , which it then tries to discharge on the other com-
ponent. Our approach is guaranteed to terminate, stating that the property holds for the
system, or returning a counterexample if the property is violated.

Compositional techniques have been shown particularly effective for well-structured
systems that have small interfaces between components [7, 14]. Interfaces consist of all
communication points through which the components may influence each other’s be-
havior. In the learning framework of [12] the alphabet of the assumption automata being
built includes all the actions in the component interface. However, in a case study pre-
sented in [21], we observed that a smaller alphabet was sufficient to prove the property.
This smaller alphabet was determined through manual inspection and with it, assume-
guarantee reasoning achieves orders of magnitude improvement over monolithic (i.e.,
non-compositional) model checking [21].

Motivated by the successful use of a smaller alphabet in learning, we investigate
here whether we can automate the process of discovering a smaller alphabet that is suf-
ficient for checking the desired properties. Smaller alphabet means smaller interface
between components, which may lead to smaller assumptions, and hence to smaller
verification problems. We propose a novel technique called alphabet refinement that
extends the learning framework to start with a small subset of the interface alphabet
and to add actions into it as necessary until a required property is shown to hold or to
be violated in the system. Actions to be added are discovered by analysis of the coun-
terexamples obtained from model checking the components. We study the properties of
alphabet refinement and show experimentally that it leads to time and memory savings
as compared to the original learning framework [12] and monolithic model checking.
The algorithm has been implemented within the LTSA model checking tool [19].

The algorithm is applicable to and may benefit any of the previous learning-based
approaches [3, 20, 24]; it may also benefit other compositional analysis techniques.
Compositional Reachability Analysis (CRA), for example, computes abstractions of
component behaviors based on their interfaces. In the context of property checking [7],
smaller interfaces may result in more compact abstractions, leading to smaller state
spaces when components are put together.

The rest of the paper is organized as follows. Section 3 presents a motivating exam-
ple. Section 4 presents our original learning framework from [12]. Section 5 presents
the main algorithm for interface alphabet refinement. Section 6 discusses properties
and Section 7 presents an experimental evaluation of the proposed algorithm. Section 8
surveys some related work and Section 9 concludes the paper. In the next section we
review the main ingredients of the LTSA tool and the L* learning algorithm.

2 Background

Labeled Transition Systems (LTSs). LTSA is an explicit-state model checker that an-
alyzes finite-state systems modeled as labeled transition systems (LTSs). Let � be the
universal set of observable actions and let � denote a special action that is unobservable.
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Fig. 1. Example LTS for a client (left) and a mutual exclusion property (right)
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Consider a simple client-server application (from [21]). It consists of a server com-

ponent and two identical client components that communicate through shared actions.
Each client sends requests for reservations to use a common resource, waits for the
server to grant the reservation, uses the resource, and then cancels the reservation. For
example, the LTS of a client is shown in Figure 1 (left), where 7 *98 ��: . The server can
grant or deny a request, ensuring that the resource is used only by one client at a time
(the LTS of the server is in the Appendix).

Parallel Composition. Parallel composition “ ; ” is a commutative and associative op-
erator such that: given LTSs � � * ��� � ���

� � ��	 � ��� � �
and � � * ��� � ���

� � ��	 � ��� � �
,

� � ; � � is , if either one of � � , � � is , . Otherwise, � � ; � � is an LTS
� * ���<���

�
��	
���=>�

where
� * � � �?� � ���� * �%� � ��� � � ��� � * �

� � � � � � , and
	

is defined as follows (the symmetric version also applies):

� � 34 �
"� �� A@& � � �

� � ; � � 34 �
"� ; � �

� � 34 �
"� � � � 34 �

"� �� ?(* �
� � ; � � 34 �

"� ; �
"�

Traces. A trace B of an LTS � is a sequence of observable actions starting from the
initial state and obeying the transition relation. The set of all traces of � is called the
language of � , denoted C � �D� . For any trace B a trace LTS can be constructed whose
language consists of only B . We sometimes abuse the notation and denote by B both a
trace and its trace LTS. The meaning should be clear from the context. For EF� � , we
denote by BHG�I the trace obtained by removing from B all occurrences of actions

 A@&�E .
Similarly, �JG�I is defined to be an LTS over alphabet E which is obtained from � by
renaming to � all the transitions labeled with actions that are not in E . Let B , B " be two
traces. Let K , K " be the sets of actions occurring in B , B " , respectively. By the symmetric
difference of B and B " we mean the symmetric difference of sets K and K " .
Safety properties. We call a deterministic LTS not containing + a safety LTS. A safety
property � is specified as a safety LTS whose language C � �6� defines the set of accept-
able behaviors over

�
� . For example, the mutual exclusion property in Figure 1 (right)

captures the desired behaviour of the the client-server application discussed earlier.
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Fig. 2. Client-Server Example: complete interface (left) and derived assumption with alphabet
smaller than complete interface alphabet (right).

An LTS � satisfies � , denoted �
� * � , iff ����& ������G
	 � &)C � �6� . For checking

a property � , its safety LTS is completed by adding error state + and transitions on
all the missing outgoing actions from all states into + so that the resulting transition
relation is total and deterministic; the resulting LTS is denoted by ����� . LTSA checks

�
� * � by computing ��; ����� and checking if + is reachable in the resulting LTS.

Assume-guarantee reasoning. In the assume-guarantee paradigm a formula is a triple� K � �
�

�
�
, where � is a component, � is a property, and K is an assumption about � ’s

environment. The formula is true if whenever � is part of a system satisfying K , then
the system must also guarantee � . In LTSA, checking

� K � �
�

�
�

reduces to checking
KF; �

� * � . The simplest assume-guarantee proof rule shows that if
� K � � � � �

�
and�

true
�

� � � K � hold, then
�
true

�
� � ; � � � �

�
also holds:

(Premise 1)
� K � � � � �

�
(Premise 2)

�
true

�
� � � K ��

true
�

� � ; � � � �
�

Coming up with appropriate assumptions used to be a difficult, manual process. Re-
cent work has proposed an off-the-shelf learning algorithm, L*, to derive appropriate
assumptions automatically [12].

The L* learning algorithm. L* was developed by Angluin [4] and later improved by
Rivest and Schapire [23]. L* learns an unknown regular language � over alphabet E
and produces a deterministic finite state automaton (DFA) that accepts it. L* interacts
with a Minimally Adequate Teacher that answers two types of questions from L*. The
first type is a membership query asking whether a string �6&?E�� is in � . For the second
type, the learning algorithm generates a conjecture K and asks whether C � K � * � . IfC � K � (* � the Teacher returns a counterexample, which is a string � in the symmetric
difference of C � K�� and � . L* is guaranteed to terminate with a minimal automaton K
for � . If K has � states, L* makes at most ��� 8 incorrect conjectures. The number
of membership queries made by L* is � �
� � ��� �����! �" � , where

�
is the size of E , �

is the number of states in the minimal DFA for � , and " is the length of the longest
counterexample returned when a conjecture is made.

3 Assume-guarantee Reasoning and Small Interface Alphabets

We illustrate the benefits of smaller interface alphabets for assume guarantee reason-
ing through the client-server example of Section 2. To check the property in a com-
positional way, assume that we break up the system into: � � * Client1 ; Client2
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and � � * Server. The complete alphabet of the interface between � � ; � and
� � (see Figure 2 (left)) is: � client1 � cancel

�
client1 � grant

�
client1 � deny

�
client1 � request,

client2 � cancel
�
client2 � grant, client2 � deny

�
client2 � request � .

Using this alphabet and the learning method of [12] yields an assumption with 8
states (see Appendix). However, a (much) smaller assumption is sufficient for prov-
ing the mutual exclusion property (see Figure 2 (right)). The assumption alphabet is� client1 � cancel, client1 � grant,client2 � cancel, client2 � grant � , which is a strict subset of the
complete interface alphabet (and is, in fact, the alphabet of the property). This assump-
tion has just 3 states, and enables more efficient verification than the 8-state assumption
obtained with the complete alphabet. In the following sections, we present techniques
to infer smaller interface alphabets (and the corresponding assumptions) automatically.

4 Learning for Assume-guarantee Reasoning

In previous work [12], we developed an automated assume-guarantee framework that
uses L* to infer assumptions for compositional verification. A central notion of the
framework is that of the weakest assumption[14], defined formally here.

Definition 1 (Weakest Assumption for E ). Let � � be an LTS for a component, � be
a safety LTS for a property required of � � , and E be the interface of the component
to the environment. The weakest assumption K ��� I of � � for E and for property � is
a deterministic LTS such that: 1)

� K ��� I * E , and 2) for any component � � , � � ;�
� � G I � � * � iff � � � * K ��� I

The notion of a weakest assumption depends on the interface between the component
and its environment. Accordingly, projection of � � to E forces � � to communicate
with our module only through E (second condition above). In [14] we showed that the
weakest assumptions exist for components expressed as LTSs and safety properties and
provided an algorithm for computing these assumptions.

The definition above refers to any environment component � � that interacts with
component � � via an alphabet E . When � � is given, there is a natural notion of the
complete interface between � � and its environment � � , when property � is checked.

Definition 2 (Interface Alphabet). Let � � and � � be component LTSs, and � be a
safety LTS. The interface alphabet E�� of � � is defined as: E�� * ���

� � � � �6��� � � � .

Definition 3 (Weakest Assumption). Given � � , � � and � as above, the weakest
assumption K � is defined as K ��� I
	 .
Note that, to deal with any system-level property, we allow properties in definition 2
to include actions that are not in

�
� � but are in

�
� � . These actions need to be in the

interface since they are controllable by � � . Moreover from the above definitions, it fol-
lows that the assumption K � is indeed the weakest: it characterizes all the environments

� � that, together with � � , satisfy property � , i.e., � � ; � � � * � iff � � � * K � .

Learning framework. The original learning framework from [12] is illustrated in Fig-
ure 3. The framework checks � � ; � � � * � by checking the two premises of the
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Fig. 3. Learning framework.

assume-guarantee rule separately, and using the conjectures K from L* as assumptions.
The automaton K output by L* is, in the worst case, the weakest assumption K � . The
alphabet given to the learner is fixed to E * E � .

The Teacher is implemented using model checking. For membership queries on
string � , the Teacher uses LTSA to check

� � � � � � �
�
. If true, then � & C � K � � , so the

Teacher returns true. Otherwise, the answer to the query is false. The conjectures re-
turned by L* are intermediate assumptions K . The Teacher implements two oracles:
Oracle 1 guides L* towards a conjecture that makes

� K � � � � �
�

true. Once this is ac-
complished, Oracle 2 is invoked to discharge K on � � . If this is true, then the assume
guarantee rule guarantees that � holds on � � ; � � . The Teacher then returns true and
the computed assumption K . Note that K is not necessarily K � , it can be stronger thanK � , i.e., C � K�� �9C � K � � , but the computed assumption is good enough to prove that
the property holds or is violated. If model checking returns a counterexample, further
analysis is needed to determine if � is indeed violated in � � ; � � or if K is imprecise
due to learning, in which case K needs to be modified.

Counterexample analysis. Trace B is the counterexample from Oracle 2 obtained by
model checking

�
true

�
� � � K � . To determine if B is a real counterexample, i.e., if it leads

to error on � � ; � � � * � , the Teacher analyzes B on � � ; � ��� . In doing so, the
Teacher needs to first project B onto the assumption alphabet E , that is the interface of

� � to � � ; � ��� . Then the Teacher uses LTSA to check
� BHG0I � � � � �

�
. If the error

state is not reached during the model checking, B is not a real counterexample, and BHG I
is returned to the learner L* to modify its conjecture. If the error state is reached, the
model checker returns a counterexample $ that witnesses the violation of � on � � in
the context of BHG I . With the assumption alphabet E * E � , $ is guaranteed to be a real
error trace on � � ; � � ; � ��� [12]. However, as we shall see in the next section, ifE&% E � , $ is not necessarily a real counterexample and further analysis is needed.

5 Learning with Alphabet Refinement

Let � � and � � be components, � be a property, E�� be the interface alphabet, and E
be an alphabet such that E'%�E�� . Assume that we use the learning framework of the
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Fig. 4. Learning with alphabet refinement (a) and additional counterexample analysis (b).

previous section, but we now set this smaller E to be the alphabet of the assumption
that the framework learns. From the correctness of the assume-guarantee rule, if the
framework reports true, � � ; � � � * � . When it reports false, it is because it finds a
trace B in � � that falsifies

� BHG I � � � � �
�
. This, however, does not necessarily mean that

� � ; � � (� * � . Real violations are discovered by our original framework only when
the alphabet is E�� , and are traces B " of � � that falsify

� B " G I 	 � � � � �
�
3.

We illustrate this with the client-server example. Assume E * � client1 � cancel
�

client1 � grant
�
client2 � grant � , smaller than E�� * � client1 � cancel

�
client1 � grant

�
client1 � deny

�
client1 � request, client2 � cancel

�
client2 � grant

�
client2 � deny

�
client2 � request � . Learning with

E produces trace: B * �
client2 � request

�
client2 � grant

�
client2 � cancel

�
client1 � request

�
client1 � grant

�
. Projected to E , this becomes BHG0I * �

client2 � grant
�
client1 � grant

�
. In the

context of BHG�I , � � * Clients violates the property since Client1 ; Client2 ; � ���
contains the following behavior (see Figure 2):

��� ��� ��� � client1 � request� 4 � 8 ��� ��� � client2 � request� 4 � 8 � 8 ��� � client2 � grant� 4 � 8 ��: ��: � client1 � grant� 4 ��: ��:0�
error � �

Learning therefore reports false. This behavior is not feasible, however, in the context
of BHG�I 	 * �

client2 � request
�

client2 � grant
�

client2 � cancel
�
client1 � request

�
client1 � grant

�
.

This trace requires a client2 � cancel to occur before the client1 � grant. Thus, in the con-
text of E � the above violating behavior would be infeasible. We conclude that when
applying the learning framework with alphabets smaller that E � , if true is reported then
the property holds in the system, but violations reported may be spurious.

5.1 Algorithm
We propose a technique called alphabet refinement, which extends our learning frame-
work to deal with smaller alphabets than E�� while avoiding spurious counterexamples.
The steps of the algorithm are as follows (see Figure 4 (a)):

1. Initialize E to a set � such that � � E�� .
2. Use the classic learning framework for E . If the framework returns true, then report

true and go to step 4 (END). If the framework returns false with counterexamples
$ (and B ), go to the next step.

3 In the assume guarantee triples: ��� � , ��� � � 	 are trace LTSs with alphabets ! , !#" respectively.
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3. Perform extended counterexample analysis for $ . If $ is a real counterexample,
then report false and go to step 4 (END). If $ is spurious, then refine E , which
consists of adding to E actions from E�� . Go to step 2.

4. END of algorithm.

When spurious counterexamples are detected, the refiner extends the alphabet with
actions in the alphabet of the weakest assumption and the learning of assumptions is
restarted. In the worst case, E � is reached, and as proved in our previous work, learning
then only reports real counterexamples. In the above high-level algorithm, the high-
lighted steps are further specified in the following.

Alphabet initialization. The correctness of our algorithm is insensitive to the initial
alphabet. We implement two options: 1) we set the initial alphabet to the empty set to
allow the algorithm to only take into account actions that it discovers, and 2) we set the
initial alphabet to those actions in the alphabet of the property that are also in E � ,i.e.,�

� �)E � (in the experiments from Section 7 we used the second option). The intuition
for the latter option is that these interface actions are likely to be significant in proving
the property, since they are involved in its definition. A good initial guess of the alphabet
may achieve big savings in terms of time since it results in fewer refinement iterations.

Extended counterexample analysis. An additional counterexample analysis is ap-
pended to our original learning framework as illustrated in Figure 4(a). The steps of
this analysis are shown in Figure 4(b). The extension takes as inputs both the coun-
terexample B returned by Oracle 2, and the counterexample $ that is returned by the
original counterexample analysis. We modified our “classic” learning framework (Fig-
ure 3) to return both $ and B to be used in alphabet refinement (as explained below).
As discussed, $ is obtained because

� BHG0I � � � � �
�

does not hold. The next step is to
check whether in fact B uncovers a real violation in the system. As illustrated by our
client-server example, the results of checking � � ; � ��� in the context of B projected
to different alphabets may be different. The correct results are obtained by projecting B
on the alphabet E�� of the weakest assumption. Counterexample analysis therefore calls
LTSA to check

� BHG�I 	 � � � � �
�
. If LTSA finds an error, the resulting counterexample $

is a real counterexample. If error is not reached, the alphabet E needs to be refined.
Refinement proceeds as described next.

Alphabet refinement. When spurious counterexamples are detected, we need to en-
rich the current alphabet E so that these counterexamples are eventually eliminated. A
counterexample $ is spurious if in the context of BHG I
	 it would not be obtained. Our
refinement heuristics are therefore based on comparing $ and BHG I
	 to discover actions
in E � to be added to the learning alphabet (for this reason $ is also projected on E � in
the refinement process). We have currently implemented the following heuristics:
AllDiff: adds all the actions in the symmetric difference of BHG I 	 and $ G I 	 ; a potential

problem is that is that it may add too many actions too soon, but if it happens to
add useful actions, it may terminate after fewer iterations;

Forward: scans the traces in parallel from beginning to end looking for the first index7 where they disagree; if such an 7 is found, both actions BHG I 	 � 7 � � $=G I 	 � 7H� are
added to the alphabet.

Backward: same as Forward but scans from the end of the traces to the beginning.
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5.2 Extension to � Modules

So far, we have discussed our algorithm for two components. We have extended al-
phabet refinement to � modules � � � � � � � � � ��� , for any � � :

. In previous work,
we have extended learning (without refinement) to � components [12, 21]. To check if

� � ; � � ; � � � ; ��� satisfies � , we decompose it into: � � and �
"� * � � ; � � � ; ���

and the learning algorithm (without refinement) is invoked recursively for checking the
second premise of the assume-guarantee rule.

Learning with alphabet refinement uses recursion in a similar way. At each recursive
invocation for ��� , we solve the following problem: find assumption K�� and alphabet
E��
	 such that the rule premises hold:

Oracle 1: ��� ; K�� � * K��� �
Oracle 2: ����� � ; ����� � ; � � � ; � �

� * K��
Here K��� � is the assumption for ���� � and plays the role of the property for the current
recursive call. Thus, the alphabet of the weakest assumption for this recursive invocation
is E �� * ���

� � � � K �� � � � �%�
� ��� � � � � ��� � � � � � � � ��� � . If Oracle 2 returns

a counterexample, then the counterexample analysis and alphabet refinement proceed
exactly as in the 2 component case. At a new recursive recursive call for ��� with a newK��  � , the alphabet of the weakest assumption is recomputed.

6 Properties of Learning with Refinement

In this section, we discuss properties of the proposed algorithm. We present here the
main results (proofs and helping lemmas are given in the Appendix) We first re-state
the correctness and termination of learning without refinement as proven in [12].

Theorem 1 (Termination and correctness for learning without refinement [12]).
Given components � � and � � , and property � , the learning framework in [12] ter-
minates and it returns true if � � ��� � � � * � and false otherwise.

For correctness and termination of learning with alphabet refinement, we first show
progress of refinement, meaning that at each refinement stage, new actions are discov-
ered to be added to E .

Proposition 1 (Progress of alphabet refinement). Let E % E � be the alphabet of the
assumption at the current alphabet refinement stage. Let B be a trace of � � � � K ��� such
that BHG�I leads to error on � � ��� � ��� by an error trace $ , but BHG�I 	 does not lead to error
on � � � � � � � . Then BHG�I 	 (* $ G�I 	 and there exists an action in their symmetric difference
that is not in E .

Theorem 2 (Termination and correctness of learning with alphabet refinement –
2 components). Given components � � and � � , and property � , the algorithm with
alphabet refinement terminates and returns true if � � � � � � � * � and false otherwise.

Theorem 3 (Termination and correctness of learning with alphabet refinement –
� components). Given components � � , � � , ... � � and property � , the recursive al-
gorithm with alphabet refinement terminates and returns true if � � � � � � ��� � � �

���
� �

� * �
and false otherwise.
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Correctness for two (and � ) components follows from the assume guarantee rule and
the extended counterexample analysis. Termination follows from termination of the
original framework, from the progress property and also from the finiteness of E � and
of � . Moreover, from the progress property it follows that the refinement algorithm for
two components has at most

� E � � iterations.
We also note a property of weakest assumptions, which states that by adding actions

to an alphabet E , the corresponding weakest assumption becomes weaker (i.e., contains
more behaviors) than the previous one.

Proposition 2. Assume components � � and � � , property � and the corresponding
interface alphabet E � . Let E � E " be sets of actions such that: E %FE " % E � . Then:C � K ��� I � � C � K ��� I�� ��� C � K ��� I
	 � .
With alphabet refinement, our framework adds actions to the alphabet, which trans-
lates into adding more behaviors to the weakest assumption that L* tries to prove. This
means that at each refinement stage 7 , when the learner is started with a new alphabet E �
such that E �  � %JE � , the learner will try to learn an assumption K ��� I�� that is weaker
than K ��� I���� � , which was the goal of the learner in the previous stage. Moreover, all
these assumptions are under-approximations of the weakest assumption K ��� I 	 that is
necessary and sufficient to prove the desired property. Of course, as mentioned before,
at each refinement stage, the learner might stop earlier, i.e., before computing the cor-
responding weakest assumption. The above property allows re-use of learning results
across refinement stages (see Section 9).

7 Experiments

We implemented learning with alphabet refinement in the LTSA model-checker. We
present here an experimental evaluation of our implementation for checking safety
properties on concurrent models. The goal of our evaluation is to assess the effect of
alphabet refinement on learning, and to compare learning with alphabet refinement with
non-compositional model checking.

Models and properties. In our experiments we used the following case studies (all
these models were analyzed before, using the original assume guarantee framework,
without refinement). Gas Station [11] describes a self-serve gas station consisting of�

customers, two pumps, and an operator. For
� *�� �
	 ��� , we checked the property

that the operator correctly gives change to a customer for the pump that he/she used.
Chiron [11] models a graphical user interface consisting of

�
“artists”, a wrapper, a

manager, a client initialization module, a dispatcher, and two event dispatchers. For� * :
� � �
�
, we checked Property 2, stating that the dispatcher notifies artists of an event

before receiving a next event, and Property 3, stating that the dispatcher only notifies
artists of an event after it receives that event. MER [21] models flight software com-
ponent for JPL’s Mars Exploration Rovers. It contains

�
users competing for resources

that are managed by a resource arbiter. For
� * :

� �  we checked a mutual exclusion
property stating that communication and driving cannot happen at the same time as
they share common resources. Rover Executive [12] is a model of a subsystem for the
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Table 1. Comparison of 2-component learning with and without alphabet refinement.

Case � No refinement Refinement + bwd Refinement + fwd Refinement + allDiff� � �
Mem. Time

� � �
Mem. Time

� � �
Mem. Time

� � �
Mem. Time

Gas Station 3 177 4.34 – 8 3.29 2.70 37 6.47 36.52 18 4.58 7.76
4 195 100.21 – 8 24.06 19.58 37 46.95 256.82 18 36.06 52.72
5 53 263.38 – 8 248.17 183.70 20 414.19 – 18 360.04 530.71

Chiron, 2 9 1.30 1.23 8 1.22 3.53 8 1.22 1.86 8 1.22 1.90
Property 2 3 21 5.70 5.71 20 6.10 23.82 20 6.06 7.40 20 6.06 7.77

4 39 27.10 28.00 38 44.20 154.00 38 44.20 33.13 38 44.20 35.32
5 111 569.24 607.72 110 – 300 110 – 300 110 – 300

Chiron, 2 9 116 110 3 1.05 0.73 3 1.05 0.73 3 1.05 0.74
Property 3 3 25 4.45 6.39 3 2.20 0.93 3 2.20 0.92 3 2.20 0.92

4 45 25.49 32.18 3 8.13 1.69 3 8.13 1.67 3 8.13 1.67
5 122 131.49 246.84 3 163.85 18.08 3 163.85 18.05 3 163.85 17.99

MER 2 40 6.57 7.84 6 1.78 1.01 6 1.78 1.02 6 1.78 1.01
3 377 158.97 – 8 10.56 11.86 8 10.56 11.86 8 10.56 11.85
4 38 391.24 – 10 514.41 1193.53 10 514.41 1225.95 10 514.41 1226.80

Rover Exec. 2 11 2.65 1.82 4 2.37 2.53 11 2.67 4.17 11 2.54 2.88

Ames K9 Rover. The model is comprised of a main component ‘Executive’ and an
‘ExecCondChecker’ component that is responsible for monitoring state conditions. The
property we checked states that for a specific shared variable, if the Executive reads its
value, then the ExecCondChecker should not read it before the Executive clears it first.

In [11], 4 properties for Gas Station and 9 properties for Chiron were checked,
to study how various 2-way model decompositions affect the performance of learn-
ing (without alphabet refinement). For most of these properties, the learning approach
performs better than non-compositional verification and it produces small (one-state)
assumptions. For some other properties, learning does not perform that well, and pro-
duces much larger assumptions. To stress-test our approach, we selected the latter, more
challenging, properties for our study here. Also note that for Gas station and Chiron we
used the same configurations (values for

�
) as reported in [11]

Experimental set-up and results. We performed two sets of experiments. First, we
studied learning with alphabet refinement for 2-way decompositions (using an experi-
mental set-up similar to [11]), to compare learning with different alphabet refinement
heuristics to learning without alphabet refinement. Second, we compared the recursive
implementation of the refinement algorithm with monolithic (non-compositional) veri-
fication, for increasing number of components. All the experiments were performed on
a Dell PC with a 2.8 GHz Intel Pentium 4 CPU and a 1.0 GB RAM, running Linux
Fedora Core 4 and using Sun’s Java SDK version 1.5.

For the first set of experiments, we used the best 2-way from [11] for Gas Station
and Chiron. For Gas Station, the decomposition is: the operator and the first pump in one
component, and the rest of the modules in the other. For Chiron, the event dispatchers
are one component, and the rest of the modules are the other. For MER we used the
decomposition where half of the users are in one component, and the other half with the
arbiter in the other. For the Rover we used the two components as described in [12].

For the second set of experiments, we implemented an additional heuristic for com-
puting the ordering in which the modules are considered by the recursive learning with
refinement. The heuristic is meant to minimize the interface between modules and fol-
lows from the observation that the ordering of the modules in the sequence � � � � � � � � �
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Table 2. Comparison of recursive learning with and without alphabet refinement and monolithic verification.

Case � No refinement Refinement + bwd Monolithic� � �
Mem. Time

� � �
Mem. Time Mem. Time

Gas Station 3 299 238.27 – 25 2.42 14.65 1.42 0.034
4 289 298.22 – 25 3.43 23.60 2.11 0.126
5 313 321.72 – 25 5.29 49.72 6.47 0.791

Chiron, 2 344 118.80 – 4 0.96 2.51 0.88 0.030
Property 2 3 182 114.57 – 4 1.12 2.97 1.53 0.067

4 182 117.93 – 4 2.21 4.59 2.42 0.157
5 182 115.10 – 4 7.77 6.97 13.39 1.22

Chiron, 2 229 134.85 – 11 1.68 40.75 1.21 0.035
Property 3 3 344 99.12 – 114 28.94 2250.23 1.63 0.068

4 295 86.03 – 114 35.65 – 2.93 0.174
5 295 90.57 – 114 40.49 – 15.73 1.53

MER 2 40 8.66 24.95 6 1.85 1.94 1.04 0.024
3 440 200.55 – 8 3.12 3.58 4.22 0.107
4 273 107.73 – 10 9.61 9.62 14.28 1.46
5 200 83.07 – 12 18.95 23.55 143.11 27.84
6 162 84.96 – 14 47.60 93.77 – 900

influences the sizes of the interface alphabets E �
�
�
� � � E �� that are used by the recursive

algorithm. We generated offline all possible orders and associated interface alphabets
and chose the order that minimizes the sum � ��� � � � � � E �� � .

The results of the experiments are shown in Tables 1 and 2 We report results for
running the learning framework with ‘No refinement’, and for refinement with back-
ward (‘+bwd’), forward (‘+fwd’) and ‘+allDiff’ heuristics. For each run we report

� K �
(the maximum assumption size reached during learning), ‘Mem.’ (the maximum mem-
ory used by LTSA to check assume-guarantee triples, measured in MB) and ‘Time’
(CPU running time, measured in seconds). Column ‘Monolithic’ reports the memory
and run-time results of non-compositional model checking. We set a limit of 30 min-
utes for each run. The exception is Chiron, Property 3, in our second study (Table 2)
where the limit was 60 minutes (this was a challenging property and we increased the
time limit in order to collect final results for our approach). The sign ‘–’ in the memory
or time columns indicate that the limit of 1GB of memory or the time limit has been
exceeded. For these cases, the data is reported as it was when the limit was reached.

Discussion. The results in both tables show that alphabet refinement improves upon
learning. Table 1 shows that alphabet refinement improved the assumption size in all
cases, and in a few, up to two orders of magnitude (see Gas Station with

� * :0� � , Ch-
iron, Property 3, with

� * �
, MER with

� * � ). It improved memory consumption in
10 out of 15 cases. It also improved running time, as for Gas Station and for MER with� * � � 	 learning without refinement did not finish within the time limit, whereas with
refinement it did. The benefit of alphabet refinement is even more obvious in Table 2
where ‘No refinement’ exceeded the time limit in all but one case, whereas refinement
completed in 14 of 16 cases, producing smaller assumption sizes in all the cases, and
up to two orders of magnitude smaller in a few; the memory consumption was also
improved in all cases, and up to two orders of magnitude in a few of them. The re-
sults in Table 1 also indicate that the performance of different refinement strategies is
mostly similar, each one beats the others on some cases, but the ‘bwd’ strategy is better.
Therefore we used this strategy for the experiments reported in Table 2.
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The results in Table 2 indicate that learning with refinement scales better than with-
out refinement for increasing number of components. Also, as

�
increases, the memory

and time consumption for ‘Refinement’ grows slower than that of ‘Monolithic’. For Gas
Station, Chiron (Property 2), and MER, for small values of

�
, ‘Refinement’ consumes

more memory than ‘Monolithic’, but as
�

increases, the gap is narrowing, and for the
largest value of

�
‘Refinement’ becomes better than ‘Monolithic’. This leads to cases

where, for a large enough parameter value, ‘Monolithic’ runs out of memory, whereas
‘Refinement’ succeeds, as it is the case for MER with

� *  .
Chiron, Property 3, was a challenging case for learning with (or without) alphabet

refinement. We looked at it more closely. After inspecting the models, we noticed that
several modules do not influence Property 3. However, these modules do communicate
with the rest of the system through actions that appear in the counterexamples reported
by our framework. As a result, alphabet refinement introduces ‘un-necessary’ actions.
If we eliminate these modules, the property still holds in the remaining system. The
performance of learning with refinement is greatly improved when applied to this re-
duced system (e.g., for

� * � , the size of the largest assumption is 13) and is better than
monolithic. We may be able to develop refinement heuristics that are less sensitive to
such problems, but we cannot expect heuristics to always produce the optimal alphabet.
Therefore, in the future, we also plan to investigate slicing-like techniques to eliminate
modules that do not affect a given property.

8 Related work

Several frameworks have been proposed to support assume guarantee reasoning [17, 22,
10, 15]. For example, the Calvin tool [13] uses assume-guarantee reasoning for the anal-
ysis of Java programs, while Mocha [2] supports modular verification of components
with requirements specified based in the Alternating-time Temporal logic. The practical
impact of these previous approaches has been limited because they require non-trivial
human input in defining appropriate assumptions.

In previous work [14, 12], we developed techniques for performing assume-guarantee
reasoning using L*. Since then, several other frameworks that use L* for learning as-
sumptions have been developed – [3] presents a symbolic BDD implementation using
NuSMV. This symbolic version was extended in [20] with algorithms that decompose
models using hypergraph partitioning, to optimize the performance of learning on re-
sulting decompositions. Different decompositions are also studied in [11] where the
best two-way decompositions are computed for model-checking with the LTSA and
FLAVERS tools. We follow a direction orthogonal to the latter two approaches and try
to improve learning not by automating and optimizing decompositions, but rather by
discovering small interface alphabets. Our approach can be combined with the decom-
position approaches, by applying interface alphabet refinement in the context of the
discovered decompositions. L* has also been used in [1] to synthesize interfaces for
Java classes, and in [24] to check component compatibility after component updates.

Our approach is similar in spirit to counterexample-guided abstraction refinement
(CEGAR) [8]. CEGAR computes and analyzes abstractions of programs (usually using
a set of abstraction predicates) and refines them based on spurious counter-examples.
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However, there are some important differences between CEGAR and our algorithm. Al-
phabet refinement works on actions rather than predicates, it is applied compositionally
in an assume-guarantee style and it computes under-approximations (of assumptions)
rather than behavioral over-approximations (as it happens in CEGAR). In the future,
we plan to investigate more the relationship between CEGAR and our algorithm.

The work of [16] proposes a CEGAR approach to interface synthesis for Java li-
braries. This work does not use learning, nor does it address the use of the resulting
interfaces in assume-guarantee verification.

Generating assumptions for a component is similar to generating component in-
terfaces to handle intermediate state explosion in compositional reachability analysis.
Several approaches have been defined to automatically abstract a component’s environ-
ment to obtain interfaces [6, 18, 7]. These approaches do not address the incremental
refinement of interfaces, and they could benefit from our new approach.

9 Conclusions and Future Work

We have introduced a novel technique for automatic and incremental refinement of in-
terface alphabets in compositional model checking. Our approach extends an existing
framework for learning assumption automata in assume-guarantee reasoning. The ex-
tension consists of using interface alphabets smaller than the ones previously used in
learning, and using counterexamples obtained from model checking the components to
add actions to these alphabets as needed. We have studied the properties of the new
learning algorithm and have experimented with various refinement heuristics. Our ex-
periments show improvement with respect to previous learning approaches in terms of
the sizes of resulting assumptions and memory and time consumption, and with respect
to non-compositional model checking, as the sizes of the checked models increase.

In future work we will address further algorithmic optimizations. Currently, after
one refinement stage we restart the learning process from scratch. The property formu-
lated in Proposition 2 in Section 6 facilitates reuse of query answers obtained during
learning. A query asks whether a trace projected on the current assumption alphabet
leads to error on � � ; � ��� . If the answer is ‘no’, by Proposition 2 the same trace will
not lead to error when the alphabet is refined. Thus, we could cache these query an-
swers. Another feasible direction is to reuse the learning table as described in [24]. We
also plan to use multiple counterexamples for refinement. This may enable faster dis-
covery of relevant interface actions and smaller alphabets. Finally we plan to perform
more experiments to fully evaluate our technique.
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Appendix

Fig. 5. Client-Server Example: LTS for Server (as displayed by the LTSA tool)

9.1 Properties of Learning with Refinement

In this section, we discuss in more detail the properties of the proposed learning frame-
work, including progress of refinement, correctness and termination. We begin with re-
stating the correctness and termination of learning without refinement as proven in [12].
Theorem 1 (Termination and correctness for learning without refinement [12]).
Given components � � and � � , and property � , the algorithm implemented by the
learning framework in [12] terminates and it returns true if � � � � � � � * � and false
otherwise.
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Fig. 6. Client-Server Example: assumption obtained with the complete interface alphabet (as dis-
played by the LTSA tool)
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For the termination and correctness of learning with our alphabet refinement, we
first prove progress of refinement. We prove that when the Refiner compares BHGI 	 and
$ G I 	 , they must be different, and their difference contains actions that are not in E .
Those are the actions to be added to E .
Proposition 1 (Progress of alphabet refinement). Let E � * ���

� � � � �6� � � � � and
E %9E � be the alphabet of the weakest assumption and that of the assumption at the
current alphabet refinement stage, respectively. Let B be a trace of � � � � K � � such thatBHG I leads to error on � � ��� � ��� by an error trace $ , but BHG I 	 does not lead to error on

� � ��� � ��� . Then BHG I 	 (* $ G I 	 and there exists an action in their symmetric difference
that is not in E .

Proof. We prove by contradiction that BHG0I 	 (* $=G I 	 . Suppose BHG�I 	 * $ G�I 	 . We know
that $ is an error trace on � � ��� � . Since actions of $ that are not in E � are internal
to � � ��� � , then $ G I 	 also leads to error on � � � � � ��� . But then BHG I
	 leads to error on

� � ��� � ��� , which is a contradiction.
We now show that there exists an action in the difference between BHG I 	 and $=G I
	

that is not in E (this action will be added to E by alphabet refinement). Trace BHG I
	
is BHG I , with some interleaved actions from E � . Similarly, $ G I 	 is BHG I with some
interleaved actions from E � , since $ is obtained by composing the trace LTS BHG I
with � � ��� � ��� . Thus BHG I * $ G I . We again proceed by contradiction. If all the ac-
tions in the symmetric difference between BHG I 	 and $ G I 	 were in E , we would haveBHG I 	 * BHG�I * $ G I * $ G I 	 , which contradicts BHG�I 	 (* $ G I 	 . �

In order to prove termination and correctness of learning with alphabet refinement,
we will use the following lemma.

Lemma 1. For any component � � , property � , and interface alphabet E ,
� K ��� I ��� � � �=� �

�
holds.

Proof. K ��� I G I * K ��� I . If in Definition 1 we substitute K ��� I for � � , we obtain that:
� � ;?K ��� I � � * � if and only if K ��� I � � * K ��� I . But the latter holds trivially, so
we conclude that � � ;2K ��� I � � * � , which is equivalent to

� K ��� I ��� � � �=� �
�
, always

holds. �

Theorem 2 (Termination and correctness of learning with alphabet refinement – 2
components). Given compoenents � � and � � , and property � , the L* algorithm with
alphabet refinement terminates and returns true if � � � � � � � * � and false otherwise.

Proof. Correctness: When the teacher returns true, then correctness is guaranteed by the
assume-guarantee compositional rule. If the teacher returns false, the extended coun-
terexample analysis reports an error for a trace B of � � , such that BHG�I 	 in the context
of � � violates the property (the same test is used in the algorithm from [12]) hence

� � ; � � violates the property.
Termination: From the correctness of L*, we know that at each refinement stage

(with alphabet E ), if L* keeps receiving counterexamples, it is guaranteed to generateK ��� I . At that point, Oracle 1 will return true (from Lemma 1). Therefore, Oracle 2 will
be applied, which will return either true, and terminate, or a counterexample B . This
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counterexample is a trace that is not in C � K ��� I�� . It is either a real counter example (in
which case the algorithm terminates) or it is a trace B such that BHG I leads to error on

� � ��� � ��� by an error trace $ , but BHG�I 	 does not lead to error on � � � � � ��� . Then from
Theorem 1, we know that BHG I
	 (* $ G I 	 and there exists an action in their symmetric
difference that is not in E . The refiner will add this action (or more actions depending
on the refinemt strategy) to E and the learning algorithm is repeated for this new alpha-
bet. Since E � is finite, in the worst case, E grows into E � , for which termination and
correctness follow from Theorem 1. �

Theorem 3 (Termination and correctness of learning with alphabet refinement –
� components). Given compoenents � � , � � , ... � � and property � , the recursive L*
algorithm with alphabet refinement terminates and returns true if � � � � � � ��� � � �

���
� �

� *
� and false othrwise.

Proof. The proof proceeds by induction on � and it follows from theorem above. �

Proposition 2. Assume we have components � � and � � , property � and the corre-
sponding interface alphabet E � . Let also E � E " be sets of actions such that: E&% E " %E � . Then: C � K ��� I � � C � K ��� I � � � C � K ��� I
	 � .
Proof. Since E � E " , we know that K ��� I G I�� * K ��� I . By substituting, in Definition 1,K ��� I for � � , we obtain that:

�
true

�
� � ; � K ��� I � � �

�
if and only if

�
true

� K ��� I � K ��� I�� � .
From Proposition 1 we know that

�
true

�
� � ; � K ��� I � � �

�
. Therefore,

�
true

� K ��� I � K ��� I � �
holds, which implies that C � K ��� I�� � C � K ��� I � � . Similarly, C � K ��� I � ��� C � K ��� I 	 � � .
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